US009135131B2

az United States Patent (10) Patent No.: US 9,135,131 B2
Schroeder et al. 45) Date of Patent: Sep. 15, 2015
(54) CUSTOMIZING OPERATION OF A TEST 5,497,498 A 3/1996 Taylor
INSTRUMENT BASED ON INFORMATION 22?&335 : ;; iggg ﬁayioi |
FROM A SYSTEM UNDER TEST 24l ostoker et al.
(Continued)
(75) Inventors: Charles G. Schroeder, Cedar Park, TX
(US); Christopher F. Graf, Liberty Hill, FOREIGN PATENT DOCUMENTS
TX (US); Ciro T. Nishiguchi, Austin,
TX (US): Nigel G. D’Souza, Austin, TX wg gj }ggﬁ ;j}ggj
(US); Daniel J. Baker, West Lafayette,
IN (US); Th D. M der, Austi
TX((US))’ omas B Magruder, Austil, OTHER PUBLICATIONS
. Ch t al., “Software Envi t for WASMII: A Data Dri
(73) Assignee: National Instruments Corporation, en o dl, SOTwaTe BavIromen » o ala Lriven
Austin, TX (US) Machine with a Virtual Hardware,” Field Programmable Logic
? Architectures, Synthesis and Applications, 4.sup.th International
(*) Notice: Subject to any disclaimer, the term of this Worksh(.)p on Fielt.i-Programmable Logic and Applications, FPL *94
patent is extended or adjusted under 35 Proceedings, Berlin, Germany, 1994; pp. 208-219.
U.S.C. 154(b) by 718 days. (Continued)
(21) Appl. No.: 13/398,529
(22) Filed: Feb. 16, 2012 Primary Examiner — Phuong Huynh o
(74) Attorney, Agent, or Firm — Meyertons Hood Kivlin
(65) Prior Publication Data Kowert & Goetzel, P.C.; Jeffrey C. Hood; Joel L. Stevens
US 2013/0218509 A1l Aug. 22,2013
(57) ABSTRACT
(51) Imt.ClL
GOG6F 11/00 (2006.01) Customizing a test instrument. A plurality of pairs of code
GOG6F 11/263 (2006.01) modules may be provided. Each pair of code modules may
GO6F 11/30 (2006.01) include a first code module having program instructions for
(52) US.CL execution by a processor of the test instrument and a second
CPC G06F 11/263 (2013.01) Code module for implementation On a programmable hard_
(58) Field of Classification Search ware element of the test instrument. For each pair of code
CPC et GO6F 11/263 modules, the first code module and the second code module
USPC B 702/123*125 may Collecti\/ely implement a function in the test instrument.
See application file for complete search history. User input may be received specifying modification of a
. second code module of at least one of the plurality of pairs of
(56) References Cited code modules. Accordingly, a hardware description may be
U.S. PATENT DOCUMENTS generated for the programmable hardware element of the test
o instrument based on the modified second code module.
4,839,578 A 6/1989 Roos
5,059,892 A 10/1991 Stoft
5,309,556 A 5/1994 Sismilich 22 Claims, 28 Drawing Sheets

CRERERCRECRERERERE]
O Q0 00 | GO 00 |00 oo 00]
|:| 00 ® o |®|®
D . O |
@ |:| 0 |@ ®
o UL ® ®|® r 75
D @®| celoe -
e sys
5 ¢ © Q |] under test
® [5] ® |® ® ® [® |o
Wi)
U UJ

US 9,135,131 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

5,555,201 A 9/1996 Dangelo et al.
5,583,749 A 12/1996 Tredennick et al.
5,603,043 A 2/1997 Taylor et al.
5,638,299 A 6/1997 Miller
5,652,875 A 7/1997 Taylor
5,684,980 A 11/1997 Casselman
5,732,277 A 3/1998 Kodosky et al.
5,737,235 A 4/1998 Kean et al.
5,963,454 A 10/1999 Dockser et al.
6,064,409 A 5/2000 Thomsen et al.
6,120,549 A 9/2000 Goslin et al.
6,219,628 Bl 4/2001 Kodosky et al.
6,226,776 Bl 5/2001 Panchul et al.
6,230,307 Bl 5/2001 Davis et al.
6,784,903 B2 8/2004 Kodosky et al.
6,885,185 Bl 4/2005 Makinson et al.
6,964,198 B2 11/2005 Eisenhower, Jr.
7,028,222 B2 4/2006 Peterson et al.
7,085,670 B2 8/2006 Odom et al.
7,542,867 B2 6/2009 Steger et al.
7,548,828 B2 6/2009 Gil et al.
7,915,909 B2 3/2011 Dunn et al.
2006/0015862 Al* 1/2006 Odometal. 717/168
OTHER PUBLICATIONS

Edwards et al., “Software acceleration using programmable hard-
ware devices,” IEEE Proceedings: Computers and Digital Tech-
niques, vol. 143, No. 1, Jan. 1996, pp. 55-63.

Leeser et al, “High Level Synthesis and Generating FPGAs with the
BEDROC System,” Journal of VLSI Signal Processing, vol. 6, No. 2,
Aug. 1993, pp. 191-214.

International Search Report for PCT/US 98/13040 mailed Dec. 22,
1998, pp. 1-7.

Ade, M; Lauwereins, R; Peperstracte, J.A.; Hardware-Software
Codesign with Grape, Proceedings of the Sixth IEEE International
Workshop on Rapid System Prototyping, pp. 40-47, Jun. 9, 1995.

Lauwereins, R; Engels, M; Ade, M; Peperstraette, J; Grape-II: A
System-Level Prototyping Environment for DSP Applications, Com-
puter, vol. 28, Issue 2, pp. 35-43, Feb. 1995.

Lysaght, P; Stockwood, J; “A Simulation Tool for Dynamically
Reconfigurable Field Programmable Gate Arrays”, IEEE Transac-
tions on Very Large Scale Integration Systems, vol. 4, Issue 3, pp.
381-390, Sep. 1996.

De Coster, Grape-II: An Introduction [online]. Automatic Control
and Computer Architectures Department. Katholicke Universiteit
Leuven, Belgium, Feb. 22, 1996 [retrieved Oct. 6, 1999] Retrieved
from the Internet @ http://www.esat kuleuven.ac.be/acca; pp. 1-25.
Wenban, Alan; Brown, Geoffrey; “A Software Development System
for FPGA-based Data Acquisition Systems”, Proceedings of the
IEEE Symposium on FPGAs for Custom Computing Machines, pp.
28-37, Apr. 1996.

Petronino et al., “An FPGA-based Data Acquisition System for a 95
GHz. W-band Radar”, IEEE International Conference on Acoustics,
Soeech and Signal Processing, vol. 5, pp. 4105-4108, Apr. 1997.
Boulay et al., “A High Throughput Controller for a 256-Channel
Cardiac Potential Overlapping System”, Canadian Conference on
Electrical and Computer Engineering, vol. 1, pp. 539-542, Sep. 1995.
Collamati et al. “Induction Machine stator Fault On-line Diagnosis
Based on LabVIEW Environment”, Mediterranean Electrotechnical
Conference, vol. 1, p. 495-498, May 1996.

Spoelder et al., “Virtual Instrumentation: A Survey of Standards and
Their Interrelation”, Proc. IEEE Instr. and Measurement Tech. Conf.,
vol. 1, pp. 676-681, May 1997.

Srinivasan et al., “LabVIEW program Design for On-Line Data
Acquisition and Predictive Maintenance”, Proc. Of the 30th South-
eastern Symp. On System Theory, pp. 520-524, Mar. 1998.
Wahidanabanu et al., “Virtual Instrumentation with Graphical Pro-
gramming for Enhanced Detection and Monitoring of Partial Dis-
charges”, Proc. Electrical Insulation Conf. 1997, pp. 291-296, Sep.
1997.

International Search Report for Application No. PCT/US2013/
026393, mailed Jul. 30, 2013; 4 pages.

* cited by examiner

U.S. Patent Sep. 15, 2015 Sheet 1 of 28 US 9,135,131 B2

high level application software

host software
(running on processor) v

fixed driver level host software
(not user-modifiable)

Y

fixed FPGA firmware
(not user-modifiable)

FPGA firmware

physical digital center power
hardware ADCs > DACs > 70 frequency, level et
FiG. 1
(PRIOR ART)
host software user can program anything they
(running on processor) want for the host software

FPGA firmware user can program anything they

want for the FPGA firmware

physical digital \] center power
hardware ADCs > DACs > /O frequency /] level elc

FIG. 2
(PRIOR ART)

U.S. Patent Sep. 15, 2015 Sheet 2 of 28 US 9,135,131 B2

CRECEEHERERERERERE
O o0 ©0 | 00 00 |00 00 00]
00 Q 3 o
[1% I:l o
N AR L
I @® —
D . O O [~—— system
5 ¢ &F | under test
@® @ @ @® @® ® @ ® |e
])
UJ U
FIG. 3A
host device device device
100 125 150
misec.
functions .
chipset
120 115
memory 1
110
DMA DMA
1
CPU 130 155
105
175
1

FIG. 3B

U.S. Patent Sep. 15, 2015 Sheet 3 of 28 US 9,135,131 B2

100
/_

computer system

FIG. 3C

D

o O)%a——m>| (9

o Oea—| ||}
8§ 9gga——>
ES a—> Jﬂ
Ib! — -
lote e 30|
| 0000T——=>
[e @1 —] Jf
=i =haad

50\

U.S. Patent Sep. 15, 2015 Sheet 4 of 28 US 9,135,131 B2

high level application software

host software
(running on processor)

A

driver level host software

A

FPGA firmware PHE firmware
physical digital center power
hardware ADCs > DACs > /0 frequency/] level et
FIG. 4
—_———— > ——— N\ N > S——— O
| I I 1 1 |
|
Il config- | 1" acg- | gen- | synchro-|i
(run ni;ggt osr? Z%irgs sor) | uration |\ %Sl}{; : | uisition 11| eration I\ nization |
| SW o |n 1 SW il SW |l SW |
11 e il i h{ |
I I ! 1 1 |
] Ll I Ll 1} |
e NI a1l NI NI 3y !
I I (! I 1 I
Il config- |} DSP : | acg- " gen- || synchro-|
FPGA firmware | uration |, sw ! uisition ||| eration || nization |,
(I H IO A o B |
) I (" I 1 I
\ N —]\ \— 7\ N]\ \—)\ \— 7
physical digital center power
hardware ADCs > DACs > /0 frequency/] level elc

U.S. Patent

Sep. 15, 2015 Sheet 5 of 28

provide a plurality of pairs of code modules
for implementation by a test instrument
602

A

receive user input specifying modification
of one or more code module pairs
604

Y

generate program instructions and
hardware description corresponding to
specified code module pairs, including the
one or more modified code module pairs
606

Y

configure the test instrument using the
program instructions and hardware description
608

FIG. 6

US 9,135,131 B2

U.S. Patent

Sep. 15, 2015 Sheet 6 of 28

provide processor-side code for execution by
a processor of a test instrument
702

Y

provide PHE-side code for implementation
by a programmable hardware element
of a test instrument
704

Y

receive user input customizing the processor-
side and/or PHE-side code to provide
adaptive behavior for the test instrument
706

A

generate program instructions and hardware
description corresponding to processor-side
and PHE-side code, including the
customization of 706
708

Y

configure the test instrument using the
program instructions and hardware description
710

Y

operate the test instrument fo test a SUT
712

Y

receive information from the SUT
714

Y

automatically modify operation of
the test instrument based on the
information according to the adaptive
behavior specified in 706
716

FIG. 7

US 9,135,131 B2

U.S. Patent Sep. 15, 2015 Sheet 7 of 28 US 9,135,131 B2

—_———_—— —_—————

| Vi \ife NV N 2\ s 0
| I | i | | :
fig- Il acg- i| gen- || synchro-
host software I contig- 1l psp|i| 29~ |l psp| 1- || synchro-1,
. fion |11 1| uisition ! (1| eration |1'| nization |i
(running on processor) | ura | SWi! (| SW L I
| Sw :: i: Sw :: i: Sw :: swo|
| | | I
I\ \ I \ . \
| L = | :
| |
:r 1::r ::r <::V 1::r 1::r :
| | | | | |
I| config- |11 il acg- i I gen- |i!| synchro-]i
PHE firmware || uration H E,):SV{/D - isition ||| E,):SM,;’# eration :: nization ||
! FwW | n| Fw i 1 Fw ! Fw |,
| N | [| I
'\‘__I“/”\k_T_/l\L ————— N e
physical center
hardware frequency, ADCs DACs
power
level
FIG. 8
If?“"?\lff'““‘\ l/?—~"‘\ —
| I | |
I . I I I I !
fig- |! 1| synchro-|!
host software || S99 11| psp]! "1 DsP|! yneiro- |,
. uration | | I I ' nization |i
running on processor) | Sw SwW
S L | | [sw
| |
I \ :i - ! i — i Y
| | [I
'l config- 1! | I [Il synchro-|i
PHE firmware ' uration H %E{/D | C“ﬁﬁovm : ?:SV’VD cu,glt/c‘)/m | nization !
: FW |: I : I : FW |,
| [[I
I\L__I__/II\L_T_/l l\k_ _/I I\L_____/'
physical center
hardware frequency, ADCs > DACs
power
level

FIG. 9

US 9,135,131 B2

Sheet 8 of 28

Sep. 15, 2015

U.S. Patent

0oL Old
alempiey [eaisAyd
A sovag _ A soav _
)
M4
wojsno |
e —\ [pr— _—\ e\ / — 7\ [(e
0 W Wy o
_ | |

n M4 nf m4 ! Wl m4 |l _ | M4 |
I uogeziu 11| uonese i M | uonisin 4 Mo ! 1| uvoneun | aJeMuULl JH
| -opouss ||\ -ueb : dSA |l -boe : dSd |, | -yuoo ||

| |
“ \ s "“ \. J “_ \. w _“ . o “_ \. w | “ N —— “
_ X 1 |y ! _ | |
I I K F K ! I]
| N 1! ' 1! ! If !
I ows 1 ws B W we BE1 o e |

MS 1 ms I 1 ms I 1 ms

N vonezs || wogese |W|MS || vomsin |1 MS |i | vonen |, Qommmmgo%ﬂq %mo wm.E::t
I| -aiyouhs __ -ueb __ dSd __ -boe __ dsd “ | -byuoo | HOS IS0y
“ \ 7 _“ “_ \ J _“ “_ \ J _ “ _
\ 7\~ “s \ VAN, /s \ /

|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
\
|
|
|
|
|
|
{
|
|
\

wojsno

US 9,135,131 B2

Sheet 9 of 28

alempiey [eaisAyd

wojsno _

Sep. 15, 2015

U.S. Patent

(—— =\ /== S Y o\ ca = =N

_ f i - I

_ [[[[

| M4 0] m4 | Wl m4 |l !

I| vonezu || uonese PHRMI i) vonsin 4] M 11 aJemuwlly IHd
| -onpuss |1 -ueb : dSalil -boe “m dsay,

“ . v, " “ A\ J “ _ \. J " “ .\ J “ _ \. J “

] 1 L I L [

| I [T 7 T

I Y \i! Y N ! \ |

I I __ __ __ _

N ms [ms | 1 ms |

| voneziu : uoneso || MS _“ womsin |} MS | Qommmmgo%ﬂq %mo wm.E::t
1| -oitouhs | -usb |1 dsd il -boe I daSd i 1JOS JSoy
“ _“ “_ _“ "_ I

/r L\/r x\’r L\/r L\/r L\

|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
\
|
|
|
|
|
|
{
|
|
\

US 9,135,131 B2

Sheet 10 of 28

alempaey [eaisAyd

Sep. 15, 2015

U.S. Patent

/, N\ /, \

_ ¥ I Iy I Ly !

_ ¥ (! h I y _

| m4 I ma4 i Wl m4 |l e m4 |

_ uoneziu __ uoieis “_ M4 __ uomnisin __ M4 “_ uonein |! aJemuLlly JHJ
| -opouss ||\ -ueb | dSA |l -boe : dSA |l -pyuoo ||

“ . v, " “ A\ J “ _ \. J " “ .\ J “ _ \. J “ “ . J “

“ __ “_ “_ __ “_ |

| 4_“ 4__ 1_" 1“_ 4_" 1“

! __ : __ : "_ _

N ms |1 ms 1 ms 1 ms ||

| uogeziu |\!] wonese ““ n_\m_m | vomsin ““ MS 1 vogen |! (10ss000.d U0 buttuni)
|| -owoufs |1 -usb 1! a Wl -boe |l dsd h| -Byuoo |1 OIEMYOS JSOY
il Jii il | I |

\ 7\ 7/ \ AN, LA AN, //

US 9,135,131 B2

Sheet 11 of 28

Sep. 15, 2015

U.S. Patent

MUl OWIN ded

€L Old

(e —\ b\
I I I I [|
_ | _ _ a _ “ _ _
_
| worGan ma il msasa |l md i) vong |
“ |O.=.\0:\Am. " “ dsd | wiojsno _ “ dsd I “ |@.QQOQ _
I _ [I _
\, V _V v . _V v . v
— el i—
] I I J T |
"\ | "\ | N a
_ i | |
| MS | | MS |
| uopezu |, | MS | | MS 1 | voneun ||
1| -aiyoufs | _ dSd _ _ dsd “ | -byuoo |1
| R | i] |
/V L\ ’V L\ IV L\ /V L\

alempaey [eaisAyd

asemuLlly JHI

(1osseo0.4d uo buiuun.)
8/B/MY0S]SOy

US 9,135,131 B2

Sheet 12 of 28

Sep. 15, 2015

U.S. Patent

vl Old
{ sova _ A Seleld Jorel
[Aousnba.)
19)Uud9
f
{ (e =\ N [\ [t [p—— \
| | | | | (] |
N ma | ! | | il omg |
I I

| oz | 50 L 0 | st 6 |1 f ez |
|| -oiyouhs _ | _ | “ | -Buyuoo |,
| | | | |
“ \ , “ \ *) “ \ J “ \ + J " \. J “ “ \ J “
]] | I I T]
| A | N | Y N | Y | 3 |
| s | | | 1o |
1 ms I ! MS
| o | S) 265 |1 g | 25 || et
i -outjoufs || 7 i dsd | 7 i dasd 1| -Buuoo |
_ \, J _ A y _ \, 7 _ \) _ \ 7 _ _ \ J _
N / \ J \ / N\ /

alemp.iey [eaisAyd

asemuLlly JHI

(1osseo0.4d uo buiuun.)
8/B/MY0S]SOy

US 9,135,131 B2

Sheet 13 of 28

Sep. 15, 2015

U.S. Patent

oGl Old

g61 9old

VGl "Old

w |
| | [
_ |
! ¥
! [Ldgp dorsng HEay |
| |
_] |
| () Aowanbaig suas
i S— o~
I SIS YD DB ERY |
| |
. & mﬁ
) L

23Ep WIORAEW | PRy Adwes g
[|
_ |
_ |

_) .
: o]
e _ Il sy 2
. . FLBY BNTIIY
! _
! |
! _
! _
| |
_ |
........... UOGEISUAT) - v -nen] R L T R {7 R 7] PAOUMOR L0 R0 -]

] T
! _
_ |
_ |

!
s facr il a) yuny c&umu_andﬁmﬁ:ﬂiﬁ._clﬂﬁ NI

dizf] muopuils sjonl _ﬁm_uum waingd sl wp3 oA

T

| weaBaI] Hoog v IBRLOS 150K m

: o
[

391 Old ast old

US 9,135,131 B2

Sheet 14 of 28

Sep. 15, 2015

3 | 1
|
|
= i s XIS
Sﬁ.r.WM ! aury ELU | T4
ORISR _ -
: 2] £l
- " ooz 1R6hug gruboy
_). m G i .
| y
3 h&. ’ '
E EEITRETET) i adfy sofibug prrbay
I |
0 iy _ suunos ;BBurUan
7 utel o Tl _ oD shBuTprg +
{Ep) wieh aysig sunas sBbuy 2ubip A5k pibay -
! adfy Rbbuy prbyy !
! B3N B DUTURTY
700] - s i g
|
!
]
_
_
_
[
L
!
Y [] e ..::.:.::..:.;..::....:,....:.w [YT YT m

U.S. Patent

US 9,135,131 B2

Sheet 15 of 28

Sep. 15, 2015

U.S. Patent

961 Old

461 9Ol

1t

e

_H i
B.tuw

_ [y

Lad ﬁ_m\m?mwﬁ_ g
|

w“ I
P

H38Rg

US 9,135,131 B2

Sheet 16 of 28

Sep. 15, 2015

U.S. Patent

g9/ 9Old

V9l Old

et

w b&u: » quoq uoreddy wdgy :,ﬁmm..m._

i m d

_ !

| |

_ LA

_ {uegp) meeng §ead |

! TEE]

“ [z £ruonbayy S3uan "

_ eo— 53 |

_ SRINOY R 20Ty B 3 e ay _

[yneT]!

! (T} 23y PIIEs QYO

| |

_ !

! |

_ ! dF9G-3T(d

Foan P L

i Fe3hen] | “2F m
L el fo/1

“ " Jllﬁ.lnm_n FLAR N A 20N

i i

[!

[!

! !

_ _

[!

_ [

. m HARRIRBHUS Y ~ v en W -+ LIERIGYG YT DEO|UADR "UDI5es Lado -:-_

i i

_ |

dpE sopudg spoe] eleedl pelag ek upd Pl

|
_Em&m

i Ao Q- asenpos 3o £

US 9,135,131 B2

Sheet 17 of 28

Sep. 15, 2015

U.S. Patent

agl oid

091 Ol

HTYIE) USRS B 45 3N 4

ERYIE) UDRRLUINRD 45 O]

B

(i1 DR

————=

uopze| oz

<]

ap) uien s2iaIg

aury B0) B

aunos phbuy

by

W auaory uonepadsur s g angion0 ! paguie sl e g L
! el ssgpgad 450 ndnn | T asinos @EBin wplip »EGg ity ¢
LR i poee _] £ g
! !
! !
! !
! !
! !
_ !
| |
| |
“ ,,,,,,,,,,,,,,,,,,,,,,,,,,, R T " RIS BRPTIBOUH RS ~-- -~ mmmooonone]
! !
| |
[i gy .
i _ _ﬂ»i ﬁm
| |
_ _
| |
| |

US 9,135,131 B2

Sheet 18 of 28

Sep. 15, 2015

U.S. Patent

494 9ld

391 "Old

) |
. |
ar m _ _
- [;
: |
! _
— _ |
! _
! _
! E
= I _
! i
] .
— R Buueags 040 sanehng Eabig aeul _
! i
! _
! _
! _
eeeeerie ooz | T :
e] mwﬁ‘. .
ﬁ nm._wy _@ : oy i
e ¥ i
. [
! .
& SO + BERTSaL xﬁu ! I
] .
! “
! _
! _
! _
...... Sinas ndal uanss ssap - L L Rl !
@ "
| .
- i _
) . . |
mele yees _ .
CERFR J I
] .
i _
HEREIE : |
_ |

US 9,135,131 B2

Sheet 19 of 28

Sep. 15, 2015

U.S. Patent

g1 Ol V.l Old

SR
| 2udi

o PORRBTRADME ARG, o I mfi LURRIEURL)

! ! ndhing

US 9,135,131 B2

Sheet 20 of 28

Sep. 15, 2015

U.S. Patent

azik "oid

/1 9ld

e

sIBULiERIIRG W

i

:

Arjmp uneodisguring g

gk

HE Gt 1

Mﬂ_ AT 49 g

[

|

[

[

|

|

|

|

|

4 71 |
royaeg BofgadiEguring b |
|

|

|

|

|

|

|

-

e GG OY BRG] <o n e

1ol £ yom 7 aphng 3

s

US 9,135,131 B2

Sheet 21 of 28

Sep. 15, 2015

U.S. Patent

4/} "Old 3/} "Old

Abhur elep by p

£ERp unipRIIRDTUl

J03I0Y LIRS DU H

siaLEdr Y U

B33 Y

.o.c._nmb_ i
e P

I

LSO B

VIO NI 8 2¥g

:‘..ﬂ::
~ eapgy

H _.,.,:.. Gy Lo BlEg]

{af 0 W30 ajdieg b

EL g @

nduy 4y

U.S. Patent Sep. 15, 2015 Sheet 22 of 28 US 9,135,131 B2

LA
4 e o
N ey T

rd 3cquisition in progress
FIG. 17G

R 2 =

US 9,135,131 B2

Sheet 23 of 28

Sep. 15, 2015

U.S. Patent

H.ZL "9id

_T " HE* whboymmad iy
o PIN¥2L J0 pUs
EIEET TRUBIB R 104 PRI
il i b m h ﬁ

IIUBAPE 10 ALET

e S0 Apes

AP 10} ApPRl

.

BI0p

LRV IS APES

SUDIE

1abbuy uegs

bbugasussap

US 9,135,131 B2

Sheet 24 of 28

Sep. 15, 2015

U.S. Patent

12} "Old

B
239

5534
e
834
% 9
253
HiE4 A i b
¢ Eeppess psoyh : i pax obpess oy has
i abrisoy fowba , n pass ofipoy Anoubsd
k r_ [04id ogenagsu oy b %
[| EzenEo]
2 =4 Ty

uoneinbyuos

US 9,135,131 B2

Sheet 25 of 28

Sep. 15, 2015

U.S. Patent

g8/ 9l

V8l Old

BRI UAR r

ARG VRGNS 35 D0 UH o

S

S

S @

nding 4y

US 9,135,131 B2

Sheet 26 of 28

Sep. 15, 2015

U.S. Patent

ast old

ol

g

A
s Susnbaginn

rrraas

o

[

spuauaediu g

ezl

Aepp unnpodimueine

143

=

if

V58 LG 4d 00

4
&

¥
kX

wmg L0 L010 39 b
]

,,,,,,,, e

oY B

US 9,135,131 B2

Sheet 27 of 28

Sep. 15, 2015

U.S. Patent

ﬂha.\mwx
- A

i s

48} "Old

ahBuy piep b

()

ey UCITRUIRSRL U

153285 BOITRLE BN L 12

 ELN
syumpansdosris p

381 "Old

1S C N 29 230y

w{.*-\i\.!))!\h\l(ntif*i:»;!) ama

! l““m TOM 44 2y

fal £ 00y 3yctuieg 4

] SR

AN B

I wduy

US 9,135,131 B2

Sheet 28 of 28

Sep. 15, 2015

U.S. Patent

H8L 9Old

981 Old

1654 478

o §

£

X 0 010 HAE

T

- seRl B ang oI

US 9,135,131 B2

1
CUSTOMIZING OPERATION OF A TEST
INSTRUMENT BASED ON INFORMATION
FROM A SYSTEM UNDER TEST

FIELD OF THE INVENTION

The present invention relates to test instruments, and more
particularly to a system and method for customizing software
and programmable hardware of test instruments.

DESCRIPTION OF THE RELATED ART

Test instruments are generally used to for performing test-
ing of devices under test (DUTs) or systems under test
(SUTs). Test instruments generally include one or more
inputs and outputs for connecting to SUTs. The inputs and
outputs may be analog, digital, radio frequency, etc., e.g., at
various voltage levels and frequencies. Test instruments are
generally able to perform one or more tests or features. For
example, test instruments may be configured to capture wave-
forms, calculate measured power, generate a tone at a pro-
grammed frequency, etc. Test instruments are also typically
calibrated in order to achieve a specified level of accuracy on
its I/0O. For example, when the device is requested to generate
a sinewave at 1V peak-peak, it may do so with +/-10 mV of
accuracy. Finally, test instruments usually include a user
interface in order to specify how the test instrument should
behave.

Currently, test instruments may be used or configured in a
variety of manners. For example, users may purchase test
instruments which have fixed software and firmware (e.g.,
implemented on a programmable hardware element). The
software and firmware may interact with underlying physical
hardware of the test instrument, such as analog-to-digital
converters (ADCs), digital to analog converters (DACs), etc.
This model is shown in FIG. 1

As another example, some test instruments may be config-
ured to be programmed in a completely custom manner,
where a user may provide custom code for a processor and for
a programmable hardware element of the test instrument.
This custom code may interact with similar underlying physi-
cal hardware as in the previous example. This model is shown
in FIG. 2.

In the first case, the user is not able to customize any of the
functionality of the test instrument. Further, the user may be
forced to purchase features that are never used, e.g., buying a
test instrument with a large set of features in order to use only
a few of them. Accordingly, these users are forced to adapt
their testing to the provided fixed functionality and may not
need other features provided by the test instrument. In the
second case, the user is forced to completely specify the
functionality of the test instrument, which may require a
tremendous amount of coding and test instrumentation
knowledge. Additionally, the requirement of providing all of
this code may be extremely cost inefficient.

Thus, both examples of test instruments result in a poor
user experience. Accordingly, improvements in test instru-
ments, especially in customization, are desired.

SUMMARY OF THE INVENTION

Various embodiments of a system and method for custom-
izing software and hardware of test instruments are presented
below.

A plurality of pairs of code modules may be provided, e.g.,
within a development environment for configuring or pro-
gramming the test instrument. Each pair of code modules may

10

15

20

25

30

35

40

45

50

55

60

65

2

include a processor-side code module having program
instructions for execution by a processor of the test instru-
ment and a programmable hardware element (PHE)-side
code module for implementation on a programmable hard-
ware element of the test instrument. In one embodiment, in
each pair, the processor-side code module and the PHE-side
code module may collectively implement a function in the
test instrument. For example, the processor-side code module
may be executable by the processor to perform a first portion
of a function, and the PHE-side code module may be config-
ured to be implemented on the programmable hardware ele-
ment to perform a corresponding second portion of the func-
tion.

The pairs of code may provide various features, e.g., those
typically associated with a test instrument, including func-
tionality associated with hardware configuration, digital sig-
nal processing, acquisition, generation, or synchronization,
among other possibilities. Additionally, the programmable
hardware element may interact with underlying hardware of
the test instrument, such as analog to digital converters
(ADCs), digital to analog converters (DACs), digital input
and output, center frequency (e.g., clocking hardware and/or
local oscillators), power level (e.g., analog gain and/or attenu-
ation hardware), among other possibilities.

In one embodiment, the code modules may be provided
within a graphical programming development environment.
For example, the code modules may be included in one or
more graphical programs having a plurality of nodes con-
nected by wires. The interconnected nodes may visually rep-
resent functionality of the one or more graphical program
portions.

User input may be received which specifies modification of
code of one or more code module pairs. For example, the user
input may modify the processor-side code module and/or the
PHE-side code module of one or a plurality of code module
pairs. In some embodiments, a portion of the PHE-side code
modules may be fixed, i.e., they may not be changed by the
user, e.g., during customization. Where the code modules
include graphical program code, the user input may specify
customization of the graphical program code, e.g., the user
may modify the nodes and/or connections between the nodes
to customize the behavior of the test instrument. Further, an
application programming interface (API) may be provided
for interacting with the plurality of pairs of code modules. In
some embodiments, this AP] may remain unchanged and
usable after said receiving user input.

The customization or modification of the code modules
may include a variety of actions. For example, the user may
remove portions or all of one or more of the code modules.
Additionally, or alternatively, the user may add additional
functionality to one or more code modules, as desired. The
user may also add functionality outside of the code modules
(e.g., which is coupled to the code modules) In one particular
embodiment, the customization may specify adaptive behav-
ior for the test instrument, e.g., such that it may dynamically
adjust operation of the test instrument in response to signals
from the test system (e.g., based on a characteristic of
received signals, content of received signals, etc.).

Finally, the test instrument may be configured with the
code modules. This configuration may include generating a
hardware description for the programmable hardware ele-
ment of the test instrument based on the second code modules
(e.g., including any modifications specified by the user input).
Similarly, the configuration may include storing the first code
modules on one or more memory mediums of the test instru-
ment, e.g., for execution by processor(s) of the test instru-
ment, including any modification specified by the user input.

US 9,135,131 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the pre-
ferred embodiment is considered in conjunction with the
following drawings, in which:

FIGS. 1 and 2 illustrate block diagrams of prior art test
instrument configuration models;

FIGS. 3A-3C illustrate exemplary systems for implement-
ing various embodiments;

FIG. 4 illustrates a block diagram of an exemplary configu-
ration model for a test instrument, according to one embodi-
ment;

FIG. 5 is a block diagram of an exemplary configuration
module including a plurality of code module pairs, according
to one embodiment;

FIG. 6 is a flowchart diagram illustrating one embodiment
of'a method for customizing a test instrument;

FIG. 7 is a flowchart diagram illustrating one embodiment
of'a method for modifying test instrument operation based on
information from a SUT;

FIGS. 8-14 are exemplary configurations an modifications
of a test instrument, according to various embodiments; and

FIGS. 15A-18H illustrating the use of graphical programs
for performing modifications to a test instrument, according
to various embodiments.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example in the drawings and are herein
described in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equiva-
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

Incorporation by Reference:

The following references are hereby incorporated by ref-
erence in their entirety as though fully and completely set
forth herein:

U.S. Pat. No. 4,914,568 titled “Graphical System for Mod-
eling a Process and Associated Method,” issued on Apr. 3,
1990.

U.S. Pat. No. 5,481,741 titled “Method and Apparatus for
Providing Attribute Nodes in a Graphical Data Flow Environ-
ment”.

U.S. Pat. No. 6,173,438 titled “Embedded Graphical Pro-
gramming System” filed Aug. 18, 1997.

U.S. Pat. No. 6,219,628 titled “System and Method for
Configuring an Instrument to Perform Measurement Func-
tions Utilizing Conversion of Graphical Programs into Hard-
ware Implementations,” filed Aug. 18, 1997.

U.S. Pat. No. 7,210,117 titled “System and Method for
Programmatically Generating a Graphical Program in
Response to Program Information,” filed Dec. 20, 2000.
Terms

The following is a glossary of terms used in the present
application:

Memory Medium—Any of various types of memory
devices or storage devices. The term “memory medium” is
intended to include an installation medium, e.g., a CD-ROM,
floppy disks 104, or tape device; a computer system memory
or random access memory such as DRAM, DDR RAM,
SRAM, EDO RAM, Rambus RAM, etc.; a non-volatile
memory such as a Flash, magnetic media, e.g., a hard drive, or

10

15

20

25

30

35

40

45

50

55

60

65

4

optical storage; registers, or other similar types of memory
elements, etc. The memory medium may comprise other
types of memory as well or combinations thereof. In addition,
the memory medium may be located in a first computer in
which the programs are executed, or may be located in a
second different computer which connects to the first com-
puter over a network, such as the Internet. In the latter
instance, the second computer may provide program instruc-
tions to the first computer for execution. The term “memory
medium” may include two or more memory mediums which
may reside in different locations, e.g., in different computers
that are connected over a network.

Carrier Medium—a memory medium as described above,
as well as a physical transmission medium, such as a bus,
network, and/or other physical transmission medium that
conveys signals such as electrical, electromagnetic, or digital
signals.

Programmable Hardware Flement—includes various
hardware devices comprising multiple programmable func-
tion blocks connected via a programmable interconnect.
Examples include FPGAs (Field Programmable Gate
Arrays), PLDs (Programmable Logic Devices), FPOAs
(Field Programmable Object Arrays), and CPLDs (Complex
PLDs). The programmable function blocks may range from
fine grained (combinatorial logic or look up tables) to coarse
grained (arithmetic logic units or processor cores). A pro-
grammable hardware element may also be referred to as
“reconfigurable logic”.

Software Program—the term “software program” is
intended to have the full breadth of its ordinary meaning, and
includes any type of program instructions, code, script and/or
data, or combinations thereof, that may be stored in a memory
medium and executed by a processor. Exemplary software
programs include programs written in text-based program-
ming languages, such as C, C++, PASCAL, FORTRAN,
COBOL, JAVA, assembly language, etc.; graphical programs
(programs written in graphical programming languages);
assembly language programs; programs that have been com-
piled to machine language; scripts; and other types of execut-
able software. A software program may comprise two or more
software programs that interoperate in some manner. Note
that various embodiments described herein may be imple-
mented by a computer or software program. A software pro-
gram may be stored as program instructions on a memory
medium.

Hardware Configuration Program—a program, e.g., a
netlist or bit file, that can be used to program or configure a
programmable hardware element.

Program—the term “program” is intended to have the full
breadth of its ordinary meaning. The term “program”
includes 1) a software program which may be stored in a
memory and is executable by a processor or 2) a hardware
configuration program useable for configuring a program-
mable hardware element.

Graphical Program—A program comprising a plurality of
interconnected nodes or icons, wherein the plurality of inter-
connected nodes or icons visually indicate functionality of
the program. The interconnected nodes or icons are graphical
source code for the program. Graphical function nodes may
also be referred to as blocks.

The following provides examples of various aspects of
graphical programs. The following examples and discussion
are not intended to limit the above definition of graphical
program, but rather provide examples of what the term
“graphical program” encompasses:

The nodes in a graphical program may be connected in one
or more of a data flow, control flow, and/or execution flow

US 9,135,131 B2

5

format. The nodes may also be connected in a “signal flow”
format, which is a subset of data flow.

Exemplary graphical program development environments
which may be used to create graphical programs include
LabVIEW®, DasylLab™, DiaDem™ and Matrixx/System-
Build™ from National Instruments, Simulink® from the
MathWorks, VEE™ from Agilent, WiT™ from Coreco,
Vision Program Manager™ from PPT Vision, Soft WIRE™
from Measurement Computing, Sanscript™ from North-
woods Software, Khoros™ from Khoral Research, SnapMas-
ter™ from HEM Data, VisSim™ from Visual Solutions,
ObjectBench™ by SES (Scientific and Engineering Soft-
ware), and VisiDAQ™ from Advantech, among others.

The term “graphical program” includes models or block
diagrams created in graphical modeling environments,
wherein the model or block diagram comprises intercon-
nected blocks (i.e., nodes) or icons that visually indicate
operation of the model or block diagram; exemplary graphi-
cal modeling environments include Simulink®, System-
Build™, VisSim™, Hypersignal Block Diagram™, etc.

A graphical program may be represented in the memory of
the computer system as data structures and/or program
instructions. The graphical program, e.g., these data struc-
tures and/or program instructions, may be compiled or inter-
preted to produce machine language that accomplishes the
desired method or process as shown in the graphical program.

Input datato a graphical program may be received from any
of various sources, such as from a device, unit under test, a
process being measured or controlled, another computer pro-
gram, a database, or from a file. Also, a user may input data to
a graphical program or virtual instrument using a graphical
user interface, e.g., a front panel.

A graphical program may optionally have a GUI associated
with the graphical program. In this case, the plurality of
interconnected blocks or nodes are often referred to as the
block diagram portion of the graphical program.

Node—In the context of a graphical program, an element
that may be included in a graphical program. The graphical
program nodes (or simply nodes) in a graphical program may
also be referred to as blocks. A node may have an associated
icon that represents the node in the graphical program, as well
as underlying code and/or data that implements functionality
of the node. Exemplary nodes (or blocks) include function
nodes, sub-program nodes, terminal nodes, structure nodes,
etc. Nodes may be connected together in a graphical program
by connection icons or wires.

Data Flow Program—A Software Program in which the
program architecture is that of a directed graph specifying the
flow of data through the program, and thus functions execute
whenever the necessary input data are available. Data flow
programs can be contrasted with procedural programs, which
specify an execution flow of computations to be performed.
As used herein “data flow” or “data flow programs” refer to
“dynamically-scheduled data flow” and/or “statically-de-
fined data flow™.

Graphical Data Flow Program (or Graphical Data Flow
Diagram)—A Graphical Program which is also a Data Flow
Program. A Graphical Data Flow Program comprises a plu-
rality of interconnected nodes (blocks), wherein at least a
subset of the connections among the nodes visually indicate
that data produced by one node is used by another node. A
LabVIEW VI is one example of a graphical data flow pro-
gram. A Simulink block diagram is another example of a
graphical data flow program.

Graphical User Interface—this term is intended to have the
full breadth of its ordinary meaning. The term “Graphical
User Interface” is often abbreviated to “GUI”. A GUI may

10

15

20

25

30

35

40

45

50

55

60

65

6

comprise only one or more input GUI elements, only one or
more output GUI elements, or both input and output GUI
elements.

The following provides examples of various aspects of
GUIs. The following examples and discussion are not
intended to limit the ordinary meaning of GUI, but rather
provide examples of what the term “graphical user interface”
encompasses:

A GUI may comprise a single window having one or more
GUI Elements, or may comprise a plurality of individual GUI
Elements (or individual windows each having one or more
GUI Elements), wherein the individual GUI Elements or
windows may optionally be tiled together.

A GUI may be associated with a graphical program. In this
instance, various mechanisms may be used to connect GUI
Elements in the GUI with nodes in the graphical program. For
example, when Input Controls and Output Indicators are cre-
ated in the GUI, corresponding nodes (e.g., terminals) may be
automatically created in the graphical program or block dia-
gram. Alternatively, the user can place terminal nodes in the
block diagram which may cause the display of corresponding
GUI Elements front panel objects in the GUI, either at edit
time or later at run time. As another example, the GUI may
comprise GUI Elements embedded in the block diagram por-
tion of the graphical program.

Front Panel—A Graphical User Interface that includes
input controls and output indicators, and which enables a user
to interactively control or manipulate the input being pro-
vided to a program, and view output of the program, while the
program is executing.

A front panel is a type of GUI. A front panel may be
associated with a graphical program as described above.

In an instrumentation application, the front panel can be
analogized to the front panel of an instrument. In an industrial
automation application the front panel can be analogized to
the MMI (Man Machine Interface) of a device. The user may
adjust the controls on the front panel to affect the input and
view the output on the respective indicators.

Graphical User Interface Element—an element of a
graphical user interface, such as for providing input or dis-
playing output. Exemplary graphical user interface elements
comprise input controls and output indicators.

Input Control—a graphical user interface element for pro-
viding user input to a program. An input control displays the
value input by the user and is capable of being manipulated at
the discretion of the user. Exemplary input controls comprise
dials, knobs, sliders, input text boxes, etc.

Output Indicator—a graphical user interface element for
displaying output from a program. Exemplary output indica-
tors include charts, graphs, gauges, output text boxes,
numeric displays, etc. An output indicator is sometimes
referred to as an “output control”.

Computer System—any of various types of computing or
processing systems, including a personal computer system
(PC), mainframe computer system, workstation, network
appliance, Internet appliance, personal digital assistant
(PDA), television system, grid computing system, or other
device or combinations of devices. In general, the term “com-
puter system” can be broadly defined to encompass any
device (or combination of devices) having at least one pro-
cessor that executes instructions from a memory medium.

Measurement Device—includes instruments, data acqui-
sition devices, smart sensors, and any of various types of
devices that are configured to acquire and/or store data. A
measurement device may also optionally be further config-
ured to analyze or process the acquired or stored data.
Examples of a measurement device include an instrument,

US 9,135,131 B2

7

such as a traditional stand-alone “box” instrument, a com-
puter-based instrument (instrument on a card) or external
instrument, a data acquisition card, a device external to a
computer that operates similarly to a data acquisition card, a
smart sensor, one or more DAQ or measurement cards or
modules in a chassis, an image acquisition device, such as an
image acquisition (or machine vision) card (also called a
video capture board) or smart camera, a motion control
device, a robot having machine vision, and other similar types
of devices. Exemplary “stand-alone” instruments include
oscilloscopes, multimeters, signal analyzers, arbitrary wave-
form generators, spectroscopes, and similar measurement,
test, or automation instruments.

A measurement device may be further configured to per-
form control functions, e.g., in response to analysis of the
acquired or stored data. For example, the measurement device
may send a control signal to an external system, such as a
motion control system or to a sensor, in response to particular
data. A measurement device may also be configured to per-
form automation functions, i.e., may receive and analyze
data, and issue automation control signals in response.

Automatically—refers to an action or operation performed
by a computer system (e.g., software executed by the com-
puter system) or device (e.g., circuitry, programmable hard-
ware elements, ASICs, etc.), without user input directly
specifying or performing the action or operation. Thus the
term “automatically” is in contrast to an operation being
manually performed or specified by the user, where the user
provides input to directly perform the operation. An auto-
matic procedure may be initiated by input provided by the
user, but the subsequent actions that are performed “automati-
cally” are not specified by the user, i.e., are not performed
“manually”, where the user specifies each action to perform.
For example, a user filling out an electronic form by selecting
each field and providing input specitying information (e.g.,
by typing information, selecting check boxes, radio selec-
tions, etc.) is filling out the form manually, even though the
computer system must update the form in response to the user
actions. The form may be automatically filled out by the
computer system where the computer system (e.g., software
executing on the computer system) analyzes the fields of the
form and fills in the form without any user input specifying
the answers to the fields. As indicated above, the user may
invoke the automatic filling of the form, but is not involved in
the actual filling of the form (e.g., the user is not manually
specifying answers to fields but rather they are being auto-
matically completed). The present specification provides
various examples of operations being automatically per-
formed in response to actions the user has taken.

FIGS. 3A-3C—Exemplary Systems

FIGS. 3A-3C illustrate exemplary systems which may
implement embodiments described herein. As shown in FIG.
3A, an exemplary test instrument 50 (also referred to as an
“instrumentation device” or “testing device™) is coupled to a
system under test (SUT) 75. As used herein, an SUT covers
the term “device under test” or “DUT”. In the embodiment of
FIG. 3A, the test instrument 50 is implemented as a chassis
which is configured or operated to test the SUT 75.

The test instrument 75 may include one or more inputs and
outputs for connecting to the SUT 75. The inputs and outputs
may be analog, digital, radio frequency, etc., e.g., at various
voltage levels and frequencies. The test instrument 75 may be
configured to perform one or more tests or may implement
various features for performing testing of the SUT 75. For
example, the test instrument 50 may be configured to capture
waveforms, calculate measured power, generate a tone at a
programmed frequency, etc. The test instrument 50 may be

10

15

20

25

30

35

40

45

50

55

60

65

8

calibrated in order to achieve a specified level of accuracy on
its input/output (I/0). For example, the test instrument 50
may be configured to generate a sine wave at 1V peak-peak,
within +/-10 mV of accuracy. The test instrument 50 may be
configured and/or may operate in the manner described
herein.

The SUT 75 may be any of various devices or systems
which may be desired to be tested, such as a various radio
frequency (RF) devices, semiconductor integrated circuits,
consumer electronics, wireless communication devices (such
as cell phones), computers, automobile electronics, energy
devices, measurement devices, etc. In one embodiment, the
test instrument 50 may be configured to perform various
testing of the SUT 75, e.g., on signals acquired from the SUT
75. In one embodiment, the chassis may acquire measure-
ments of the SUT 75, such as current, voltage, etc., e.g., using
analog sensors, and/or digital signals using digital I/O.

FIGS. 3B illustrates an exemplary block diagram of one
embodiment of the test instrument 50. As shown, the test
instrument 50 may include a host device 100 (e.g., a host
controller board), which may include a CPU 105, memory
110, and chipset 115. Other functions that may be found on
the host device 100 are represented by the miscellaneous
functions block 120. In some embodiments, the host device
100 may include a processor and memory (as shown) and/or
may include a programmable hardware element (e.g., a field
programmable gate array (FPGA)). Additionally, one or more
of'the cards or devices (e.g., device 125 and/or 150) may also
include a programmable hardware element. In further
embodiments, a backplane of the test instrument 50 may
include a programmable hardware element. In embodiments
including a programmable hardware element, it may be con-
figured according to a graphical program as described in the
various patents incorporated by reference above.

As shown, the host device 100 (e.g., the chipset 115 of the
host device 100) may provide communication (e.g., PCle
communication, PXI communication, or other bus commu-
nication) to a first peripheral device 125 and a second periph-
eral device 150 over bus 175. The first peripheral device 125
and second peripheral device 150 may be configured to
change configurations based on information provided by the
host device 100, as described herein.

The devices may be any of various devices (e.g., PCle
devices), such as measurement devices (e.g., DAQ devices),
processing devices, I/O devices, network devices, etc. Addi-
tionally, similar to above, the devices may include one or
more programmable hardware elements or processors and
memory to implement their respective functionality. In some
embodiments, the devices 125 and 150 may be configured to
acquire signals from the SUT 75 to perform testing. For
example, the device 125 may be configured to measure and
perform analog to digital conversion for voltage of the SUT
75. Similarly, the device 150 may be configured to measure
and perform analog to digital conversion for current of the
SUT 75. Further devices may be included in the chassis 50,
such as devices for performing GPS measurements, e.g.,
acquiring time using GPS circuitry for synchronization pur-
poses, among other possibilities.

In some embodiments, multiple SUTs 75 may be measured
concurrently. For example, one or more devices in the test
instrument 50 may be used for performing concurrent mea-
surement, such as for RF testing, among other possibilities.
Further, the test instrument 50 and/or devices included therein
may be configured to perform measurements over a network,
such as a wireless network (e.g., 802.11, WiMax, etc.).

FIG. 3C illustrates host device 100 as a computer system.
As shown in FIG. 2A, the host device 100 may be coupled to

US 9,135,131 B2

9

chassis 50 (e.g., including the first device 125 and the second
device 150) and may include a display device and one or more
input devices. Similar to descriptions of the host device 100
above, the host may include at least one memory medium on
which one or more computer programs or software compo-
nents according to one embodiment of the present invention
may be stored. For example, the memory medium may store
one or more graphical programs which are executable to
perform the methods described herein. Additionally, the
memory medium may store a graphical programming devel-
opment environment application used to create and/or
execute such graphical programs. The memory medium may
also store operating system software, as well as other soft-
ware for operation of the computer system. Various embodi-
ments further include receiving or storing instructions and/or
data implemented in accordance with the foregoing descrip-
tion upon a carrier medium. In alternate embodiments, the
chassis 50 may include a host device and the computer system
may be configured to communicate with the host device in the
chassis 50. For example, the computer system may be used to
configure the host device in the chassis 50 and/or the devices
125 and 150 also included in the chassis 50.

In various embodiments, the host device 100 may be
coupled to a second computer system or device via a network
(or a computer bus). The computer systems may each be any
of various types, as desired. The network can also be any of
various types, including a LAN (local area network), WAN
(wide area network), the Internet, or an Intranet, among oth-
ers. Similarly, the host device 100 may be coupled to the test
instrument 50 via various mechanisms.

FIG. 4—Block Diagram of Exemplary Configuration Model
for a Test Instrument

FIG. 4 is a block diagram illustrating an exemplary con-
figuration model for a test instrument. As shown, the lowest
level of the test instrument may be the physical hardware. In
this embodiment, the hardware may include ADCs, DACs,
digital 1/O, center frequency (e.g., clocking hardware and/or
local oscillators), power level (e.g., analog gain and/or attenu-
ation hardware), etc. In one embodiment, this is the /O that a
user may have access to, e.g., during customization, and the
hardware necessary to make that /O function properly.

As also shown, above this level is the FPGA firmware,
which may communicates with the physical hardware and the
driver level host software and may implement the hardware
features of the device. The driver level host software may
execute on the computer (or controller) and may have an API
that allows the user to access the features of the device. At the
highest level is the application software, which may call into
(or otherwise utilize) the driver level APL.

The various embodiments provided herein may be particu-
larly applicable to the configuration model shown in FIG. 4.
More specifically, a user may be able to customize or config-
ure both the configuration and code of the host software as
well as the configuration and code of the firmware, imple-
mented on a programmable hardware eclement. In one
embodiment, the customizations described below may par-
ticularly apply to the customization of the driver level soft-
ware and programmable hardware element firmware portion
of the system.

FIG. 5—Block Diagram of Configuration Model with Pairs
of Code Modules

FIG. 5 illustrates a more specific configuration model of
FIG. 4. In this embodiment, major components in the soft-
ware and firmware of FIG. 4 have been broken into five code
module pairs (processor-side and PHE-side code modules).
These code pairs may implement at least the basic function-
ality typically found in a test instrument. The software code

10

15

20

25

30

35

40

45

50

55

60

65

10

modules may correspond to driver level host software and/or
high level application software, as desired. The processor-
side code modules may be executed by one or more proces-
sors of the test instrument (e.g., located in the host 100, device
125, device 150, etc.) and the PHE-side code modules may be
implemented by one or more PHEs of the test instrument
(e.g., located in the devices 125, device 150, etc.).

As shown, the code module pairs include configuration,
DSP, acquisition, generation, and synchronization, although
more or less pairs are also envisioned. The configuration code
module pair may be used for programming the physical hard-
ware to a given state (e.g., power level, frequency, data rate,
etc), and/or calibrating the test instrument. The DSP code
module pair may be used for changing the sample rate of the
data, filtering the data to improve the frequency response of
the test instrument, digitally changing the gain of the data, or
other processing. The acquisition code module pair may be
used for acquiring data from the inputs and for provision to
the host. The generation code module pair may be used for
sending data from the host out the outputs. The synchroniza-
tion code module pair may be used for aligning I/O between
multiple modules or cards within the test instrument and/or
between multiple test instruments, as desired.

These code modules may be provided to the user in a
number of ways. For example, the code modules may be
provided within a configuration tool or development environ-
ment, which may be used to configure the test instrument. For
example, the user may install software on a computer system
(e.g., the computer system 100 of FIG. 3C) and may use the
software to configure the test instrument. In one specific
embodiment, the code module pairs may be installed within
or along with a development environment, e.g., a graphical
programming development environment, such as Lab-
VIEW® provided by National Instruments.

In one embodiment, the code modules may be included in
one or more graphical programs having a plurality of nodes
connected by wires. For example, there may be a first graphi-
cal program corresponding to software of the host of the test
instrument and a second graphical program corresponding to
the PHE of the test instrument. Alternatively, the functionality
of'the test instrument may be fully specified in a single graphi-
cal program. The interconnected nodes of the graphical pro-
gram(s) may visually represent functionality of the one or
more graphical programs. However, the code modules may be
provided in a number of different development environments,
and are not limited to graphical programming embodiments.

In one embodiment, the code modules may be provided in
one or more templates within the development environment.
For example, a user may be able to open a template project
which includes the code modules and which may be ready for
configuration to a test instrument (e.g., may be operable with-
out modification). Accordingly, the user may be able to sim-
ply modify the already present code modules in order to
configure to the test instrument to implement the desired
behavior. The code modules may appear as individual modu-
lar blocks (e.g., which are interconnected) on the display of
the computer system. In one embodiment, a user may be able
to expand each block to modity its functionality (e.g., where
it may be represented by a node, such as a sub-VI, which
expands into a graphical program in graphical programming
embodiments). Alternatively, or additionally, the code mod-
ules may simply be included in a program with sections
corresponding to each of the modular blocks. For example,
the template may include a first set of code for the host and a
second set of code for the programmable hardware element.
Each of these sets of codes may have sections corresponding
to each of the modular blocks (e.g., where each section is

US 9,135,131 B2

11

labeled, such as by a color, which indicates which modular
block the section or individual nodes correspond to).

In some embodiments, the code modules (and/or pairs of
code modules) may be provided within a palette or library.
For example, a user may select which code modules (or pairs
of code modules) he would like included in the program. The
user may include these modules by selecting the desired code
modules and manually including them in the desired program
(e.g., by dragging and dropping them into a graphical pro-
gram, possibly from a palette, following graphical program-
ming embodiments). Alternatively, or additionally, the user
may simply select the desired code modules, and they may be
automatically assembled or integrated into a new or existing
program. For example, a test instrument wizard (e.g., a series
of GUIs) may be displayed on the display where a user may
select the desired functionality of the test instrument, e.g., by
selecting the desired functionality. In response, a program or
configuration may be automatically created or assembled
which implements the desired functionality, e.g., by auto-
matically including the appropriate code modules. Thus, the
code modules may be specified or provided in a number of
ways.

As discussed below, these code modules may be custom-
ized by the user. More specifically, the user may be able to
choose which of the code modules to keep, which to change,
and which to eliminate, without affecting the functionality or
behavior of the other code modules. Because the code mod-
ules may be provided, e.g., within a development environ-
ment or configuration tool of the test instrument, a user may
be able to fully customize the functionality of the test instru-
ment, e.g., without having to write much code.

Additionally, an application programming interface (API)
may be provided for interacting with the plurality of pairs of
code modules. For example, this API may be used by the
“high level application software” of FIG. 4 to interact with the
driver level host software and PHE firmware (e.g., corre-
sponding to the pairs of code modules of FIG. 5). In some
embodiments, this APl may remain unchanged and usable
even after modification or customization.

FIG. 6—Customizing a Test Instrument

FIG. 6 illustrates a method for customizing a test instru-
ment. The method shown in FIG. 6 may be used in conjunc-
tion with any of the computer systems or devices shown in the
above Figures, among other devices. In various embodi-
ments, some of the method elements shown may be per-
formed concurrently, in a different order than shown, or may
be omitted. Additional method elements may also be per-
formed as desired. As shown, this method may operate as
follows.

In 602, a plurality of pairs of code modules may be pro-
vided, e.g., within a development environment for configur-
ing or programming the test instrument. As discussed above,
regarding FIG. 5, these code modules may be provided in a
number of different manners. As also discussed, each pair of
code modules may include a processor-side code module
having program instructions for execution by a processor of
the test instrument and a PHE-side code module for imple-
mentation on a programmable hardware element of the test
instrument. Thus, in each pair, the processor-side code mod-
ule and the PHE-side code module may collectively imple-
ment a function in the test instrument. For example, the pro-
cessor-side code module may be executable by the processor
to perform a first portion of a function, and the PHE-side code
module may be configured to be implemented on the pro-
grammable hardware element to perform a corresponding
second portion of the function.

30

35

40

45

50

55

12

As discussed above, the pairs of code may provide func-
tionality associated with hardware configuration, digital sig-
nal processing, acquisition, generation, or synchronization,
among other possibilities. Additionally, the programmable
hardware element may interact with underlying hardware of
the test instrument, such as ADCs, DACs, digital 1/0, center
frequency (e.g., clocking hardware and/or local oscillators),
power level (e.g., analog gain and/or attenuation hardware),
etc.

The plurality of pairs of code modules in 602 may refer to
those included for specifying functionality of a test instru-
ment. Thus, there may be more pairs of code modules than the
plurality of 602 that are not included for configuring the test
instrument. In one embodiment, the user may have selected
the plurality of code module pairs from a larger set of code
module pairs. Thus, the pairs of code modules in 602 may be
a subset of a total number of available code modules, e.g., and
may be used for configuring a particular test instrument.

In 604, user input may be received which specifies modi-
fication of code of one or more code module pairs. For
example, the user input may modify the processor-side code
module and/or the PHE-side code module of one or a plurality
of the code module pairs provided in 602 and/or included in
the current configuration of the test instrument.

The customization or modification of the code modules
may include a variety of actions. For example, the user may
remove portions or all of one or more of the code modules.
Additionally, or alternatively, the user may add additional
functionality to one or more code modules, as desired. Even
further, the user may add functionality outside of any of the
code modules, e.g., to provide functionality that is different
from that provided by the currently selected code modules.
Thus, a user may modify the PHE and/or software portions of
one or more of the code module pairs, remove some or all of
the PHE and/or software portions of one or more of the code
module pairs, and/or add new PHE and/or software code in
addition to the existing code provided by the plurality of code
module pairs, as desired. However, in some embodiments, a
portion of the code modules (e.g., the PHE-side code mod-
ules) may be fixed, i.e., they may not be changed by the user,
e.g., during customization.

The user may specity the modification in a variety of man-
ners. For example, where the code modules are specified via
graphical program code, the user input may specify customi-
zation of the graphical program code, e.g., the user may
modify the nodes and/or connections between the nodes to
customize the behavior of the test instrument. Alternatively,
the user input may be specified in a different development
environment (e.g., modifying textual code of the code mod-
ules), via a test instrument configuration tool (e.g., using a
configuration wizard or other GUI), etc.

In one particular embodiment, the customization may
specify adaptive behavior for the test instrument, e.g., such
that it may dynamically adjust operation of the test instrument
in response to signals from the test system (e.g., based on a
characteristic of received signals, content of received signals,
etc.). Further details regarding this adaptive behavior are
provided below with respect to FIG. 7.

In 606, program instructions and hardware description(s)
corresponding to specified code module pairs, including the
one or more modified code module pairs may be generated.
For example, the software of the processor-side code modules
may be compiled for execution by processor(s) of the test
instrument. For example, the type of processor(s) of the test
instrument may be detected and the program instructions may
be generated to correspond to the instruction set of the
detected type of processor(s). There may be processors in

US 9,135,131 B2

13

various different locations within the test instrument, e.g.,
within a host, which may be collocated with the PHE(s) and
underlying hardware or not (e.g., within the chassis or
coupled to the chassis, as shown in the embodiments of FIGS.
3B and 3C). Additionally, there may be processors within
individual cards or devices of the test device (e.g., devices 125
and/or 150 of FIG. 3B). Thus, the software may be executed
by one or a plurality of processors located in various different
areas of the test device.

Additionally, the PHE-side code modules may be con-
verted to hardware description level (HDL) code, such as
Verilog, for implementation on the PHE(s) of the test instru-
ment. Similar to above, the PHE code may be in various
locations, e.g., within individual devices of the test device
(e.g., devices 125 and/or 150 of FIG. 3B), or in other loca-
tions, e.g., the backplane of the chassis 50. In one embodi-
ment, anetlist may be generated (e.g., from the HDL code) for
programming gates of the PHE(s). In graphical programming
embodiments, the generation of HDL code or netlists may be
performed in the manner described in U.S. Pat. No. 6,219,
628, which was incorporated by reference in its entirety
above.

Finally, in 608, the test instrument may be configured with
the program instructions and according to the hardware
description(s). More specifically, the PHE(s) of the test
instrument may be programmed according to the generated
HDL code or netlist(s) and the program instructions may be
stored on one or more memory mediums of the test instru-
ment, e.g., for execution by processor(s) of the test instru-
ment. Note that the program instructions may be stored in a
host portion of the test instrument, which may be included
within the same enclosure as the PHE of the test instrument
(e.g., and underlying hardware) or may be separate from the
enclosure of the PHE of the test instrument (e.g., of an exter-
nal computer system coupled to a chassis containing the PHE
and underlying hardware). In either case, the test instrument
may include both the host and PHE portions, even if the host
portion is implemented via a separate computer system.

The test instrument may then be configured and may be
ready to operate as configured, e.g., to test an SUT.

FIG. 7—Modifying Test Instrument Operation Based on
Information from a SUT

FIG. 7 illustrates a method for modifying test instrument
operation based on information received from a SUT. The
method shown in FIG. 7 may be used in conjunction with any
of the computer systems or devices shown in the above Fig-
ures, among other devices. In various embodiments, some of
the method elements shown may be performed concurrently,
in a different order than shown, or may be omitted. Additional
method elements may also be performed as desired. As
shown, this method may operate as follows.

In 702, processor-side code may be provided. The proces-
sor-side code may be intended for execution by a processor of
atest instrument. Additionally, in 704, PHE-side code may be
provided. The PHE-side code may be intended for implemen-
tation by a programmable hardware element of a test instru-
ment. For example, the processor-side code and PHE-side
code may be provided as pairs of code modules as discussed
above regarding FIGS. 6 and 7. However, the code may be
provided in any form, as desired. For example, the code may
be provided as uniform code without indications of modules
or sections in the code. For example, the processor-side code
may be monolithic and the PHE-side code may also be mono-
lithic. Regardless, the provided code may specify functional-
ity of a test instrument.

In 706, user input may be received customizing (or other-
wise modifying) the processor-side and/or PHE-side code to

20

40

45

50

55

65

14

provide adaptive behavior for the test instrument. More spe-
cifically, the user input may specify functionality or behavior
which may allow the test instrument to dynamically or auto-
matically adjust its operation based on information received
from a SUT, e.g., during testing of the SUT. The modification
to operation of the test instrument may include modification
of processing of signals received from the SUT, modification
of signals sent to the SUT, configuration of the test instru-
ment, configuration of the SUT, and/or any desired modifica-
tion.

For example, the customization may specify that the test
instrument automatically adjust methods of receiving or
modifying signals received by the SUT based on character-
istics of the signals. As a specific example, the test instrument
may automatically adjust the gain of signals received by the
SUT to an appropriate level (e.g., increasing gain when the
level is too low or decreasing gain when the level is too high).

As another example, the customization may specify that
the test instrument should modify its behavior based on infor-
mation provided by the SUT (e.g., based on content encoded
within the signals sent by the SUT). For example, a user may
desire to let the SUT control changeover of tests, e.g., where
the SUT may trigger changeover from a first test mode to a
second test mode by providing a particular stimulus signal.
Additionally, the SUT may be able to respond to or initiate
frequency hopping, e.g., during RF testing. Other types of
adaptive behavior are also envisioned.

Another example may include when the SUT and test
instrument are communicating to each other using a defined
protocol. In that case, there may be Request and Acknowl-
edge signals passing back and forth between the two systems,
along with data. This may allow the SUT to request responses
or operation changes and implement intelligent tests. For
example, an SUT that is a semiconductor IC for wireless
communication may be able to test perform internally (e.g.,
internal hardware or software), if it receives the correct stimu-
lus from the test instrument. For example, the SUT may
request a signal at X frequency and Z power, which it may
utilize to perform self checks. Then, the SUT may continue by
requesting a signal atY frequency and W power, and so on.

Another example may include when testing an SUT, and
the SUT is checking its bit-error rate (BER). The test may
start at a low data rate, and if the SUT detects that its BER is
very good, it may request a higher data rate from the test
instrument. This sequence may continue until the SUT
detects a bad BER, at which point it may request the test
instrument to lower the data rate. This process may be used as
part of the process of “binning” an SUT, to determine it’s
maximum operating speed.

This customization may be performed in the manner
described above in 604; however, other customizations are
also envisioned. For example, as discussed above, the code
may not be provided in code modules or pairs of code mod-
ules, but may be instead be provided in other manners, such as
monolithic code. Accordingly, the user may simply custom-
ize the code by modifying the monolithic code. Similar to
embodiments above, a user may also perform customizations
using a series of GUIs (e.g., a wizard) which may then auto-
matically modify the code according to the user’s input. Other
customizations are envisioned.

In 708, program instructions and hardware description(s)
corresponding to processor-side code and the PHE-side code
may be generated, including the customization of 706. This
step may be performed in a similar manner to 606.

710, the test instrument may be configured using the pro-
gram instructions and hardware description. This step may be
performed in a similar manner to 608.

US 9,135,131 B2

15

712, the test instrument may be operated to test a SUT.
More specifically, the processor(s) of the test instrument may
execute the program instructions and the PHEs of the test
instrument may operate according to the hardware descrip-
tion(s) to test the SUT. During testing, various stimulus sig-
nals may be provided from the test instrument to the SUT and
various responses or signals may be provided from the SUT to
the test instrument.

In 714, during testing, information may be received from
the SUT. The information may correspond to the customiza-
tion specified in 706 above. For example, the information
may correspond to characteristics of signal(s) provided by the
SUT, information encoded in the signals provided by the SUT
(such as data), or any other information specified by the
customization.

In 716, in response to the information, operation of the test
instrument may be automatically modified based on the infor-
mation, according to the adaptive behavior specified in 706.

Note that while FIG. 7 includes the step of customizing the
processor-side code and/or the PHE-side code to implement
the adaptive behavior, it is possible that the adaptive behavior
may have been previously specified in the code. Accordingly,
customization may not be required for the test instrument to
behave in the adaptive manner described herein. Further,
while two sets of code are described, a single set (e.g., the
processor and/or the PHE) may be used instead.

FIGS. 8-14—FExemplary Configurations and Modifications
of a Test Instrument

FIGS. 8-14 illustrate exemplary configurations and modi-
fications of a test instrument. While these figures are
described with the use of an upper level API, some embodi-
ments may not implement an API. Thus, the exemplary con-
figurations and modifications may still be implemented with-
out the use of the described API.

FIG. 8 illustrates an exemplary initial configuration of a
test instrument, e.g., one which may be provided to a user
within a template or default configuration for the test instru-
ment. FIG. 8 illustrates the typical connections between the
PHE firmware, and the physical hardware.

For example, the user may use the configuration host soft-
ware API to specify a particular power level and center fre-
quency at the host software level. This value may then be sent
to the firmware and lastly down to the physical hardware. For
acquisition, the data comes into the ADCs, and then gets
captured by the Acquisition Engine in the PHE via the DSP
firmware (FW), and then can be read out through the acqui-
sition host software API. On the generation side, the API may
be used to generate data at the software level, which may be
passed to the generation FW in the PHE, then to the DSP FW,
and finally to the SUT via the DACs.

FIG. 9 illustrates an exemplary modification to the initial
configuration of FIG. 8. In this example, the Acquisition
Engine and Generation Engine have been removed. All of the
other software/firmware remains unchanged. In the modified
version, the digital I/O connector is used for streaming the
ADC and DAC data, instead of the host. This allows the user
to use a different device for data acquisition and generation,
which can be connected to the digital I/O port.

FIG. 10 illustrates a different modification to the initial
configuration of FIG. 8. In this example, the configuration of
the hardware can be controlled by the SUT (e.g., following
the method of FIG. 7). When a configuration is called from the
host API, instead of writing it directly to the physical hard-
ware, it may be stored in some custom FW (for example, in a
memory medium). In one embodiment, the user could store
multiple configurations or operating modes in the memory.
This approach allows for calibration to be taken into account.

10

15

20

25

30

35

40

45

50

55

60

65

16

Then, the configuration being used may be selected by SUT
control, e.g., during testing, either by data received by the
ADC, or through the Digital I/O port, as desired.

One example is an automatic gain control circuit (AGC).
The user could store a plurality of different configurations,
e.g., for 100 different power levels. Then, the custom FW
could look atthe power of the signal received by the ADC, and
pick a different configuration at run-time to maximize the
dynamic range of the ADC.

Another example would be frequency hopping. The user
could store 16 different configurations, e.g., for 16 different
center frequencies. Then, the SUT could request a new center
frequency, either through the data path (by decoding the ADC
data) or through the digital I/O port. Accordingly, the opera-
tion of the test instrument may be automatically changed,
e.g., during testing.

FIG. 11 illustrates a different modification to the initial
configuration of FIG. 8. This example is similar to the previ-
ous example, except that the configuration software/firmware
has been removed. Thus, in this example, the user can directly
control the physical hardware from the PHE (e.g. by SUT
control), but now calibration isn’t necessarily taken into
account.

FIG. 12 illustrates a different modification to the initial
configuration of FIG. 8. In this case, the user has inserted
custom Digital Signal Processing logic into the data path of
the ADC and/or DAC. They may also have custom host soft-
ware for configuring the custom DSP firmware.

FIG. 13 illustrates a different modification to the initial
configuration of FIG. 8. In this example, the data is received
via the ADC, processed through custom DSP processing, and
sent out the DAC. This could be used for a number of appli-
cations, one of which is a channel emulator. The custom DSP
could modify the signal to have the affect of broadcasting the
signal through some channel. In this example, the system may
allow for data combination through the digital I/O port, or
through peer-to-peer DMA links, e.g., for aggregating data
from multiple devices to do MIMO processing.

FIG. 14 illustrates a different modification to the initial
configuration of FIG. 8. This example could be used for
interfacing with a radio, or testing a radio. The ADC data may
be decoded, depacketized, demodulated, etc, and sent to the
host for final processing. Likewise for the DACs, the message
data from the host may be encoded, modulated, packetized,
etc, and finally sent to the DAC.

FIGS. 15A-18H—Exemplary Modifications Using Graphi-
cal Programming

FIGS. 15A-18H illustrate host and PHE side graphical
programs that may be used during customization and opera-
tion of a test instrument. More specifically, these Figures
show both the host code and PHE code for an RF OUT
generation and RF IN acquisition example. Shown first is the
unmodified building block approach. Shown second is a
modified version where the data no longer comes from the
host for generation, but comes in and out of the DIO port (e.g.,
corresponding to FIG. 9).

FIGS. 15A-15G illustrates a graphical program corre-
sponding to software at the driver level (e.g., below the API
discussed above). The graphical program is split into 7 sec-
tions, corresponding to the blocks of FIG. 8. In this particular
example, all of the modular blocks are expanded and shown
connected together. Visually, each section may be represented
by differently colored labels. In alternate embodiments, the
modular blocks may be shown connected together (e.g., simi-
lar to FIG. 8) and may be expanded into the underlying
graphical code in response to user input (e.g., on a per block
or global basis, as desired).

US 9,135,131 B2

17

More specifically, FIG. 15A corresponds to session initial-
ization and the opening of the communication port to hard-
ware. FIG. 15B corresponds to configuration, e.g., for setting
up the power level and center frequency. FIG. 15C corre-
sponds to generation, e.g., for downloading the desired wave-
forms to the hardware, setting up how the hardware should
generate in response to a trigger, etc. FIG. 15D corresponds to
synchronization, e.g., for setting up the synchronization cir-
cuitry, routing the synchronization trigger, etc. FIG. 15E cor-
responds to DSP, e.g., for setting up the DSP (frequency shift,
digital gain, rate change, etc.). F1IG. 15F corresponds to acqui-
sition, e.g., for acquiring a waveform and returning it back to
the user. Finally, FIG. 15G corresponds to closing the session
and resetting the instrument.

FIGS. 16 A-16F illustrates the graphical program of FIGS.
15A-15G except that the generation and acquisition code has
been removed and replaced with some custom code for set-
ting up the custom PHE firmware, much like the example
shown in FIG. 9. In this example, 16 A corresponds to session
initialization and the opening of the communication port to
hardware, FIG. 16B corresponds to configuration, FIG. 16C
corresponds to synchronization, FIG. 16D corresponds to
DSP, and FIG. 16F corresponds to closing the communication
port to hardware and closing the session.

In this example, FIG. 15C (corresponding to generation)
and 15F (corresponding to acquisition) have been replaced
with custom code for setting up the custom PHE firmware,
shown in FIG. 16E. More specifically, this code may be used
for setting up the direction of the DIO signals, clearing the
FIFO’s for the DIO port, and starting the transfer of data
in/out the DIO port.

FIGS.17A-171 illustrates a graphical program correspond-
ing to code at the firmware level (e.g., for implementation on
a PHE). The graphical program is split into several sections,
similar to the blocks of FIG. 8. Similar to above, the code
modules may be visually indicated and/or displayed in vari-
Ous manners.

FIG. 17A corresponds to generation, e.g., fetching wave-
form(s) from memory, modifying depending on state of the
device, etc. FIGS. 17B and 17H illustrate the portion of the
graphical program which performs synchronization, e.g.,
selecting trigger sources. FIGS. 17C and 17F correspond to
DSP, e.g., digital gain, frequency shift, rate change, equaliza-
tion, etc. FIG. 17D corresponds to data transmission, e.g.,
sending data to the DACs, and FIG. 17E corresponds to
receiving data from the ADCs. FIG. 17G corresponds to
acquisition, e.g. capturing waveform(s) into memory. FIG.
171 corresponds to configuration, e.g. configuring the center
frequency and power level.

FIGS. 18A-18H illustrate the graphical program of FIGS.
17A-171, except that the acquisition and generation pieces
have been removed and the synchronization pieces have been
modified, but the DSP, DAC, and ADC code is the same. In
this example, FIG. 18 A corresponds to custom code for sam-
pling data from DIO port and storing the data in a FIFO. FIG.
18B corresponds to custom to the modified synchronization
code. FIG. 18C corresponds to DSP and FIG. 18D corre-
sponds to data transmission, similar to FIGS. 17C and 17D
discussed above.

FIG. 18E corresponds to receiving data from the ADCs and
FIG. 18F corresponds to DSP, similar to FIGS. 17E and 17F
discussed above. FIG. 18H corresponds to the modified syn-
chronization code. FIG. 18G corresponds to sending the
waveform data out through the digital I/O outputs.

Further Embodiments

While the above embodiments have been described with

respect to test instruments and testing SUTs, they may be

5

10

15

20

25

30

35

40

45

50

55

60

65

18

extended to configuration or customization of any devices or
instruments. Thus, the above described embodiments are not
limited to the particular environments and examples dis-
cussed above and may be applied to any appropriate systems,
as desired.

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.

We claim:

1. A method for customizing a test instrument, comprising:

utilizing a computer to perform:

storing first code for execution by a processor of the test
instrument;

storing second code for implementation on a program-
mable hardware element of the test instrument;

receiving user input customizing the second code prior
to said storing the second code, wherein the user input
specifies adaptive behavior for the test instrument
based on information from a system under test (SUT);

generating and storing a hardware description for the
programmable hardware element based on the user
input;

wherein, after implementation of the hardware descrip-
tion on the programmable hardware element and dur-
ing testing of the SUT coupled to the test instrument,
the test instrument is configured to determine infor-
mation received from the SUT during testing of the
SUT;

wherein operation of the test instrument is automatically
modified based on the adaptive behavior specified by
the user input and the information received from the
SUT during testing of the SUT, wherein modification
of the operation comprises one or more of:
configuration of the test instrument; or
configuration of the SUT.

2. The method of claim 1, wherein the first code and the
second code are specified in one or more graphical program
portions comprising a plurality of nodes connected by wires,
wherein the plurality of nodes visually represent functionality
of'the one or more graphical program portions, wherein said
receiving user input specifying customization comprises
receiving user input modifying the one or more graphical
program portions.

3. The method of claim 1, wherein the operation of the test
instrument is automatically modified based on a characteris-
tic of a signal received from the SUT.

4. The method of claim 1, wherein the operation of the test
instrument is automatically modified based on content of a
signal received from the SUT.

5. The method of claim 1, wherein modification of the
operation further comprises one or more of:

modification of processing of signals received from the

SUT; or

modification of signals sent to the SUT.

6. A method for customizing a test instrument, comprising:

utilizing a computer to perform:

providing a configuration for a test instrument, wherein
the configuration comprises first code for execution
by a processor of the test instrument and second code
for implementation on a programmable hardware ele-
ment of the test instrument;

receiving user input customizing the configuration for
the test instrument, wherein the user input specifies

US 9,135,131 B2

19

modification to the second code, wherein the modifi-
cation to the second code specifies adaptive behavior
for the test instrument;
generating and storing a hardware description for the
programmable hardware element based on the con-
figuration and the user input, wherein, after imple-
mentation of the hardware description on the pro-
grammable hardware element, the test instrument is
configured to:
receive information from the system under test (SUT)
coupled to the test instrument; and
automatically modify operation of the test instrument
based on the information, wherein said automati-
cally modifying comprises performing the adaptive
behavior specified by the user input customizing
the configuration for the test instrument, including
one or more of:
configuring the test instrument; or
configuring the SUT.

7. The method of claim 6, wherein the configuration com-
prises a plurality of pairs of code modules, wherein each pair
of code modules comprises a first code module having pro-
gram instructions for execution by a processor of the test
instrument and a second code module for implementation on
a programmable hardware element of the test instrument,
wherein, for each pair of code modules, the first code module
and the second code module collectively implement a func-
tion in the test instrument, wherein the first code module of a
pair of code modules is executable on the processor to per-
form a first portion of a function, and wherein the second code
module of the pair of code modules is configured to be imple-
mented on the programmable hardware element to perform a
corresponding second portion of the function.

8. The method of claim 6, wherein the configuration is
specified in one or more graphical program portions compris-
ing a plurality of nodes connected by wires, wherein the
plurality of nodes visually represent functionality of the one
or more graphical program portions, wherein said receiving
user input specifying customization comprises receiving user
input modifying the one or more graphical program portions.

9. The method of claim 6, wherein the information com-
prises a characteristic of a signal received from the SUT,
wherein said automatically modifying is performed based on
the characteristic.

10. The method of claim 6, wherein said receiving infor-
mation from the SUT comprises:

receiving a signal from the SUT; and

determining the information by analyzing content of the

signal received from the SUT;

wherein said automatically modifying is based on the con-

tent of the signal.

11. A non-transitory, computer accessible memory
medium storing program instructions for customizing a test
instrument, wherein the program instructions are executable
by a computer processor to:

provide first code for execution by a processor of the test

instrument;

provide second code for implementation on a program-

mable hardware element of the test instrument;

receive user input customizing the second code prior to

said storing the second code, wherein the user input
specifies the adaptive behavior for the test instrument;
generate and store a hardware description for the program-
mable hardware element based on the user input;
wherein, after implementation of the hardware description
on the programmable hardware element and during test-
ing of a system under test (SUT) coupled to the test

10

15

20

25

30

35

40

45

50

55

60

65

20

instrument, the test instrument is configured to deter-
mine information received from the SUT during testing
of the SUT,;

wherein operation of the test instrument is automatically

modified based on the information received from the
SUT during testing of the SUT according to the adaptive
behavior specified by the user input, wherein modifica-
tion of the operation comprises one or more of:
configuration of the test instrument; or

configuration of the SUT.

12. The non-transitory, computer accessible memory
medium of claim 11, wherein the first code and the second
code are specified in one or more graphical program portions
comprising a plurality of nodes connected by wires, wherein
the plurality of nodes visually represent functionality of the
one or more graphical program portions, wherein said receiv-
ing user input specifying customization comprises receiving
user input modifying the one or more graphical program
portions.

13. The non-transitory, computer accessible memory
medium of claim 11, wherein the operation of the test instru-
ment is automatically modified based on a characteristic of'a
signal received from the SUT.

14. The non-transitory, computer accessible memory
medium of claim 11, wherein the operation of the test instru-
ment is automatically modified based on content of a signal
received from the SUT.

15. The non-transitory, computer accessible memory
medium of claim 11, wherein modification of the operation
further comprises one or more of:

modification of processing of signals received from the

SUT; or

modification of signals sent to the SUT.

16. A non-transitory, computer accessible memory
medium storing program instructions for customizing a test
instrument, wherein the program instructions are executable
by a computer processor to:

provide a first configuration for a test instrument, wherein

the first configuration comprises first code for execution
by a processor of the test instrument and second code for
implementation on a programmable hardware element
of the test instrument based on information from a sys-
tem under test (SUT);

receive user input customizing the first configuration for

the test instrument, wherein the user input specifies
modification to the second code, wherein the modifica-
tion to the second code specifies adaptive behavior for
the test instrument;

generate and store a hardware description for the program-

mable hardware element based on the first configuration
and the user input, wherein, after implementation of the
hardware description on the programmable hardware
element, the test instrument is configured to:
receive information from the SUT coupled to the test
instrument during testing of the SUT; and
automatically modify operation of the test instrument
based on the information, wherein said automatically
modifying comprises performing the adaptive behav-
ior specified by the user input customizing the first
configuration for the test instrument, including one or
more of:
configuring the test instrument; or
configuring the SUT.

17. The non-transitory, computer accessible memory
medium of claim 16, wherein the first configuration com-
prises a plurality of pairs of code modules, wherein each pair
of code modules comprises a first code module having pro-

US 9,135,131 B2

21

gram instructions for execution by a processor of the test
instrument and a second code module for implementation on
a programmable hardware element of the test instrument,
wherein, for each pair of code modules, the first code module
and the second code module collectively implement a func-
tion in the test instrument, wherein the first code module of a
pair of code modules is executable on the processor to per-
form a first portion of a function, and wherein the second code
module of the pair of code modules is configured to be imple-
mented on the programmable hardware element to perform a
corresponding second portion of the function.

18. The non-transitory, computer accessible memory
medium of claim 16, wherein the first configuration is speci-
fied in one or more graphical program portions comprising a
plurality of nodes connected by wires, wherein the plurality
of nodes visually represent functionality of the one or more
graphical program portions, wherein said receiving user input
specifying customization comprises receiving user input
modifying the one or more graphical program portions.

19. The non-transitory, computer accessible memory
medium of claim 16, wherein the information comprises a
characteristic of a signal received from the SUT, wherein said
automatically moditying is performed based on the charac-
teristic.

20. The non-transitory, computer accessible memory
medium of claim 16, wherein said receiving information from
the SUT comprises:

receiving a signal from the SUT; and

determining the information by analyzing content of the

signal received from the SUT;

wherein said automatically modifying is based on the con-

tent of the signal.

21. A method for customizing a test instrument, compris-
ing:

utilizing a computer to perform:

storing first code for execution by a processor of the test
instrument;

storing second code for implementation on a program-
mable hardware element of the test instrument,
wherein the second code specifies adaptive behavior
for the test instrument based on information received
from a system under test; and

10

15

20

25

30

40

22

generating a hardware description for the programmable
hardware element based on the second code;
implementing the hardware description on the program-
mable hardware element;
operating the test instrument to test the SUT coupled to the
test instrument, wherein said operating comprises the
processor executing the first code and the programmable
hardware element performing functionality specified by
the hardware description;
determining, by the test instrument, information received
from the SUT during the test instrument operating to test
the SUT; and
automatically modifying operation of the test instrument
based on the information received from the DUT during
the test instrument operating to test the SUT, including
one or more of:
configuring the test instrument; or
configuring the SUT;
wherein the test instrument continues operating to test the
SUT after said automatically modifying operation.
22. A test instrument, comprising:
a processor;
a non-transitory computer readable memory medium
coupled to the processor, wherein the memory medium
stores program instructions that are executable by the
processor to implement first functionality of the test
instrument;
a programmable hardware element coupled to the proces-
sor, wherein the programmable hardware element is
configured to implement second functionality of the test
instrument;
one or more input and output ports for communicating with
a system under test (SUT);
wherein the processor and memory medium and the pro-
grammable hardware element are configured to:
receive information from a SUT coupled to the test
instrument; and

automatically modify operation of the test instrument
based on the information, including one or more of:
configuring the test instrument; or
configuring the SUT.

#* #* #* #* #*

